วันศุกร์ที่ 6 พฤศจิกายน พ.ศ. 2552

ความเป็นมา ของ อินเทอร์เน็ต โพรโตคอลรุ่นที่ 6 (IPv6)

ความเป็นมา ของ อินเทอร์เน็ต โพรโตคอลรุ่นที่ 6 (IPv6)
(IPv6) ถูกพัฒนาขึ้นมาด้วยจุดประสงค์หลักในการแก้ปัญหาการขาดแคลนจำนวนหมายเลขไอพีซึ่งกำหนดโดยมาตรฐานไอพีเวอร์ชันที่ 4 ซึ่งในมาตรฐานของเวอร์ชัน 6 นี้จะใช้ระบบ 128 บิตในการระบุหมายเลยไอพีIPv6 (Internet Protocol version 6) เป็นเวอร์ชันล่าสุดของ Internet Protocol และได้รวมผลิตภัณฑ์ที่สนับสนุน IP มาเป็นส่วนหนึ่งด้วย รวมถึงระบบปฏิบัติการหลัก IPv6 ได้รับการเรียกว่า "IPng" (IP Next Generation) โดยปกติ IPv6 เป็นกลุ่มของข้อกำหนดจาก Internet Engineering Task Force (IETF) โดย IPv6 ได้รับการออกแบบให้ปฏิรูปกลุ่มของการปรับปรุง IP เวอร์ชัน 4 โดย host ของเครือข่ายและ node แบบ intermediate ซึ่ง IPv4 หรือ IPv6 สามารถดูแลแพ็คเกตของ IP เวอร์ชันอื่น ผู้ใช้และผู้ให้บริการสามารถปรับรุ่นเป็น IPv6 โดยอิสระ การปรับปรุงที่ชัดเจนของ IPv6 คือความยาวของ IP address เปลี่ยนจาก 32 เป็น 128 การขยายดังกล่าวเพื่อรองรับการขยายของอินเตอร์เน็ต และเพื่อหลีกเลี่ยงการขาดแคลนของตำแหน่งเครือข่ายIP v6 ได้กำหนดกฎในการระบุตำแหน่งเป็น 3 ประเภทคือ unicast (host เดี่ยวไปยัง host เดี่ยวอื่น ๆ) anycast (host เดี่ยวไปยัง host หลายตัวที่ใกล้ที่สุด) multicast (host เดี่ยวไปยัง host หลายตัว) ส่วนเพิ่มที่พิเศษของ IPv6 คือ- ตัวเลือกในการระบุส่วนขยายของส่วนหัว ได้รับการตรวจสอบเฉพาะจุดหมาย ดังนั้นความเร็วของระบบเครือข่ายสูงขึ้น - ตำแหน่ง anycast ทำให้มีความเป็นไปได้ของการส่งข้อความไปยังหลาย ๆ gateway ที่ใกล้ที่สุดด้วยแนวคิดว่าให้บุคคลใด ๆ บริหารการส่งแพ็คเกตไปยังบุคคลอื่น anycast สามารถใช้ในการปรับปรุงตาราง routing ตลอดเส้นทาง - แพ็คเกตได้รับการระบุให้มีการไหลชนิดพิเศษได้ ทำให้แพ็คเกตที่เป็นส่วนของมัลติมีเดียที่ต้องการ นำเสนอแบบ real time สามารถมีคุณภาพการให้บริการที่สูง - ส่วนหัวของ IPv6 รวมถึงส่วนขยายยินยอมให้แพ็คเกตระบุกลไกแหล่งต้นทาง สำหรับการรวมข้อมูล และรักษาความลับIETF ใช้เวลากว่าสามปีในการพัฒนาจนได้โพรโตคอล IPng (IP Next Generation) โดยมีความเป็นมาโดยสังเขปดังนี้ช่วงปลายปี 1992 มีการยื่นข้อเสนอในการพัฒนาโพรโตคอลดังกล่าวทั้งหมด 4 ฉบับ อันได้แก่ CNAT, IP Encaps, Nimrod และSimple CLNP ต่อมาในเดือนธันวาคมปี 1992 มีการส่งข้อเสนอเพิ่มอีก 3 ฉบับคือ The P Internet Protocol (PIP), The SimpleInternet Protocol (SIP) และ TP/IX หลังจากนั้นฤดูใบไม้ผลิในปี 1992 ข้อเสนอที่ชื่อว่า Simple CLNP ได้เปลี่ยนชื่อมาเป็น TCPand UDP with Bigger Addresses (TUBA) และ IP Encaps เปลี่ยนเป็น IP Address Encapsulation (IPAE)ในปี 1993 IPAE ได้รวมเข้ากับ SIP โดยยังคงใช้ชื่อว่า SIP ซึ่งต่อมากลุ่มนี้ได้รวมกับกลุ่ม PIP กลายเป็นคณะทำงานที่เรียกตัวเองว่า Simple Internet Protocol Plus (SIPP) โดยในเวลาเดียวกันนั้นกลุ่มคณะทำงาน TP/IX ได้เปลี่ยนชื่อใหม่เป็น CommonArchitecture for the Internet (CATNIP)กล่าวได้ว่า ณ เวลานั้น มีข้อเสนอ 3 ชุดที่ถูกนำมาทำการคัดเลือกตามเกณฑ์ที่กำหนดไว้ในเอกสาร RFC1726 อันได้แก่ CATNIP
TUBA และ SIPP
1. CATNIP (Common Architecture for Next Generation Internet Protocol) ได้ทำการสร้างความเป็นสามัญระหว่าง Internet (IPv4, TCP, UDP), OSI (CLNP, TP4, CLTP) และโพรโตคอล Novell (IPX, SPX)2. TUBA (TCP and UDP with Bigger Addresses) ได้แทนที่เน็ตเวิร์คเลเยอร์ด้วย ISO's CNLP ซึ่งประกอบไปด้วยชุดหมายเลขแอดเดรสที่มีขนาดใหญ่กว่าในขณะที่ TCP/UDP สามารถใช้งานได้โดยไม่ต้องทำการปรับปรุง ทั้งยังทำงานร่วมกับ IDRP,IS-IS และ ES-IS ได้3. SIPP (Simple Internet Protocol Plus) ได้นำคุณลักษณะบางอย่างใน IPv4 ที่คิดว่าไม่เหมาะสมออก และทำการปรับปรุงส่วนหัวของโพรโตคอลเสียใหม่ให้มีประสิทธิภาพมากยิ่งขึ้น และทำการเพิ่มขนาดของแอดเดรสจากเดิม 32 บิตเป็น 64 บิต (ซึ่งต่อมาได้พัฒนาเป็นรุ่น 128 บิต ในเดือนกรกฎาคม 1994 กุล่มผู้บริหารโครงการ IPng Area (คณะทำงานที่ถูกแต่งตั้งโดย Internet Engineering Task ForceIETF ในปี 1993 เพื่อทำหน้าที่ในการประเมินเลือกสรรข้อเสนอ IPng ได้สรุปผลการประเมินทั้งสามข้อเสนอรวมถึงคำแนะนำ และแนวทางในการพัฒนา IPv6 อย่างเป็นทางการไว้ในเอกสาร RFC 1752 โดยมีประเด็นสำคัญดังนี้- นโยบายการแบ่งสรรหมายเลขไอพีแอดเดรส (รุ่นที่ 4) ที่ใช้ในขณะนั้นสามารถใช้งานต่อไปได้แล้ว- ไม่มีความจำเป็นที่จะต้องเรียกคืนชุดหมายเลขไอพีรุ่นที่ 4 ที่มีการใช้ประโยชน์ต่ำกว่าเกณฑ์กลับคืนมา- ไม่มีความจำเป็นจะต้องทำการเปลี่ยนแปลงชุดหมายเลขไอพี (Renumber) ที่ถูกใช้งานอยู่ในอินเทอร์เน็ตเสียใหม่- ให้ใช้หลักการแบ่งสรรหมายเลขไอพีคลาส A ที่เหลืออยู่แบบ CIDR- ข้อกำหนด "Simple Internet Protocol Plus (SIPP) Spec. (128 bit ver)" จะถูกเลือกให้เป็นต้นแบบพื้นฐานสำหรับการพัฒนาIPng- คณะทำงาน IPng ถูกก่อตั้งขึ้นโดย Steve Deering และ Ross Callon- คณะทำงาน Address autoconfiguration ถูกก่อตั้งและนำทีมโดย Dave Katz ร่วมกับ Sue Thomson- คณะทำงาน IPng Transition ถูกก่อตั้งและนำทีมโดย Bob Gilligan- จะต้องมีการพัฒนาการใช้งานแอดเดรสของ non-IPv6 ในสภาพแวดล้อมของ IPv6 และในทางกลับกันการใช้งานไอพีแอดเดรสIPv6 ภายใต้สภาพแวดล้อมของ non-IPv6-โครงการ IPng Area จะสิ้นสุดลงเมื่อมีการเสนอมาตรฐานสำหรับโพโตคอลดังกล่าวออกมาในปลายปี 1994- ให้มีการพัฒนา Informational RFCs ที่บรรยายถึงคุณลักษณะเฉพาะของ IPng APIs- ต้องสนับสนุน Authentication header และ algorithm อย่างเฉพาะเจาะจง- ต้องสนับสนุน Privacy header และ algorithm อย่างเฉพาะเจาะจง- ต้องมีการพัฒนาโครงร่างของระบบ Firewall สำหรับ IPngและในช่วงกลางปี 1994 เช่นกัน IPng ได้รับการกำหนดหมายเลขรุ่นโดยหน่วยงาน Internet Assigned Numbers Authority(IANA) ให้เป็นรุ่นที่ 6 อันเป็นที่มาของ IPv6ต่อมาเอกสาร RFC1752 ชุดนี้ได้ถูกยอมรับและดำเนินการต่อโดยคณะทำงานภายใต้ IETF ที่ชื่อว่า Internet EngineeringSteering Group (IESG) ในที่สุดIPv6 คือIPv6 ย่อมาจาก "Internet Protocol Version 6" ซึ่งจะเป็น Internet protocol รุ่นต่อไป ออกแบบและคิดค้นโดย IETF เพื่อที่จะนำมาใช้แทน Internet Protocol รุ่นปัจจุบันคือ IP Version 4 ("IPv4")ปัจจุบันนี้ส่วนใหญ่ เราจะใช้ IPv4 ที่มีอายุเกือบ 20 ปีแล้ว และเริ่มจะมีปัญหาคือ IPv4 addresses กำลังใกล้จะหมด เนื่องจากมีเครื่องคอมพิวเตอร์ใหม่ ๆ ที่ต้องการจะต่อกับ Internet เพิ่มขึ้นทุกวันIPv6 จึงถูกคิดขึ้นมาเพื่อแก้ไขปัญหาที่เกิดใน IPv4 เช่น เพิ่มจำนวน IP address ที่ใกล้จะหมด และได้เพิ่มความสามารถ บางอย่างให้ดีขึ้นกว่า IPv4 ด้วย เช่นความสามารถในด้าน routing และ network autoconfigurationIPv6 ถูกกำหนดให้แทนที่ IPv4 แบบค่อยเป็นค่อยไป คือช่วงระหว่างการเปลี่ยนจาก IPv4 เป็น IPv6 คงใช้เวลาหลายปี จะต้องให้ IP ทั้งสองเวอร์ชั่นทำงานร่วมกันได้ เครื่องไหนเปลี่ยนเป็น IPv6 แล้วก็ต้องให้ IPv4 เข้าใช้บริการได้IPv4 addresses ก่อนIPv4 ที่เราใช้กันอยู่ในปัจจุบัน เช่น 192.168.1.1 หรือ 203.97.45.200 มาจากเลขฐานสอง(มีเลข 1 กับเลข 0 เท่านั้น) จำนวน 32 บิทตัวอย่าง 110000001010100000000001000000001ถ้าเป็น IP แบบนี้ IP เดียว คงจะพอจำได้ แต่เวลาอ้างถึง IP คงจะบอกกัน หนึ่ง หนึ่ง ศูนย์ ศูนย์.......... เป็นที่ลำบาก ทั้งคนบอกและคนฟัง เพื่อให้สื่อถึงกันได้ง่ายขึ้น จึงใช้วิธีเปลี่ยนเป็นเลขฐานสิบ ที่เราคุ้นเคย แต่ถ้าเปลี่ยนทีเดียวทั้ง 32 บิท เป็นเลขฐานสิบแล้ว ก็ยังเป็นจำนวนสูงมาก ยากที่จะจดจำเช่นกัน จึงใช้แบ่งเลขฐานสอง 32 บิทที่ว่าเป็นช่วง ๆ ช่วงละ 8 บิท 4 ช่วง จากนั้นก็แปลงเลขฐานสอง 8 บิทเป็นเลขฐานสิบแต่ละช่วงคั่นด้วย "." ตัวอย่าง เช่นตัวอย่าง 11000000 10101000 00000001 000000001 = 192.168.1.1สำหรับท่านที่ไม่เคยเรียนวิธีการแปลงฐานเลข อาจจะงง ได้เลข 192.168.1.1 มาอย่างไร มาดูวิธีการแปลงฐานเลข กันสักหน่อยดีไหม สูตรการแปลงฐานเลข (จำไม่ได้เหมือนกัน นึก ๆ เอา ถ้าผิดขออภัย)N*B(x-1)เมื่อ N คือจำนวนเลขที่เราเห็น 0 หรือ 1 สำหรับเลขฐานสอง ถ้าเป็นฐานอื่น ก็จะมีเลชมากกว่านี้ เช่น ฐานแปด ก็จะมีเลข 0 – 7B คือฐานเลข ในที่นี้ เท่ากับ 2 เพราะเป็นฐานสอง ถ้าฐานแปด B ก็จะเท่ากับแปดX เป็นหลักที่เลข N อยู่11000000 = 1*27 + 1*26 + 0*25+ 0*24 + 0*23 + 0*22 + 0*21 + 0*20= 128 + 64 + 0 + 0 + 0 + 0 + 0 + 0= 19210101000 = 1*27 + 0*26 + 1*25+ 0*24 + 1*23 + 0*22 + 0*21 + 0*20= 128 + 0 + 32 + 0 + 8 + 0 + 0 + 0= 16800000001 = 0*27 + 0*26 + 0*25+ 0*24 + 0*23 + 0*22 + 0*21 + 1*20= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1= 1พอว่าเรื่องการแปลงฐานเลข ทำให้นึกได้ เมื่อก่อนนี้ ไม่เข้าใจเลย เช่น เวลา Network admin ให้มาว่า เน็ตเวอร์กคุณคือ 203.46.246.64/28 นะ เราก็พอรู้ว่า /28 น่ะคือ netmask แล้วมันคือ netmask เท่าไร หาได้อย่างไร ตอนหลังจึงทราบว่า 28 มาจาก mask ตัวเลข 1 ไป 28 บิท(ของ 32 บิท) ที่เหลือเป็น 0 หมด เขียนเป็นเลขฐานสอง 8 บิท 4 ชุดได้ว่า11111111 11111111 11111111 11110000 พอรู็ว่าเป็นแบบนี้ ก็แปลงเป็นฐานสิบจากวิธีการข้างบนได้ว่า 255.255.255.240IPv6 addressesIPv6 ประกอบด้วยเลขฐานสอง จำนวน 128 บิท ถ้าจะคิดว่า จะเป็น IPs ต่าง ๆ กันได้กี่ IPs ก็หาได้จาก 2^128-1: 340282366920938463463374607431768211455คงเป็นไปไม่ได้ ที่ใครจะจำ 128 บิท IPs ได้ ถึงแม้จะแปลงเป็นเลขฐานสิบแล้วก็ตาม เพราะเป็นเลขถึง 39 หลัก ดังนั้นผู้ค้นคิด จึงตัดสินใจใช้เลขฐาน 16 แทน เพราะ 4 บิทของเลขฐานสอง แปลงเป็นเลขฐาน 16 ได้ 1 หลักพอดี คือ 0-9 จากนั้นก็ใช้ a-f แทน 10-15 (ถ้าใครไม่รู้จักเลขฐาน 16 ก็คือหนึ่งหลักมีเลขเริ่มต้นจาก 0 1 2 3 4 5 6 7 8 9 a b c d e f) ดังนั้นเลข ip ก็จะเป็นเลขฐาน 16 จำนวน 32 หลัก (128/4)fffffffffffffffffffffffffffffff ซึ่งก็ยังจำและเขียนยากอยู่ดี หรือว่าเขียน ตกไปหนึ่งตัว ก็จะทำให้ผิดความจริงไปได้ เพื่อให้สังเกตุเห็นได้ง่าย ผู้ค้นคิดจึงกำหนดให้ใช้ ":" ขั้น แต่ละ 16 บิท(ฐานสอง) หรือ 4 หลักของเลขฐาน 16 ได้ผลเป็น ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffffตัวอย่าง IPv6 address3ffe:ffff:0100:f101:0210:a4ff:fee3:9566เลข 0 ที่นำหน้า ของแต่ละ 16 บิท สามารถละไว้(ไม่ต้องเขียน)ได้3ffe:ffff:0100:f101:0210:a4ff:fee3:9566 -> 3ffe:ffff:100:f101:210:a4ff:fee3:9566ในแต่ละ 16 บิทบล็อค ถ้ามีแต่เลข 0 สามารถแทนด้วย "::" แต่ห้ามเขียนแบบนี้ ":::" 3ffe:ffff:100:f101:0:0:0:1 -> 3ffe:ffff:100:f101::1การลดรูปมากที่สุดก็คือlocalhost address0000:0000:0000:0000:0000:0000:0000:0001 -> ::1IPv4 แล้วทำไมถึงเป็น IPv6 ทำไมไม่เป็น IPv54 บิทแรกของ IP header จะถูกกันไว้เป็นตัวบอกเวอร์ชั่นของ IP ดังนั้นเวอร์ชั่นของ IP ที่จะเป็นได้คือ 0 - 15- 4 ถูกนำมาใช้แล้ว สำหรับ IPv4 ในปัจจุบัน - 5 สำรองไว้ใช้สำหรับ Stream Protocol (STP, RFC 1819 / Internet Stream Protocol Version 2) ซึ่งจริง ๆ แล้วก็ยังไม่ได้นำมาใช้งาน ดังนั้นเลขที่เหลือตัวต่อไปก็คือ 6 ด้วยเหตุนี้ จึงเป็น IPv6ทำไม IPv6 จึงใช้ถึง 128 บิท มากเหลือเกิน ?ตอนออกแบบ IPv4 ผู้คนก็พากันคิดว่า 32 บิทนะพอแล้ว พอใช้งานแน่ ๆ ถ้าเราดูกันจริง ๆ แล้ว 32 บิทน่ะก็พอใช้งานจนถึงปัจจุบัน และก็คงพอใช้งานไปอีกสัก 2-3 ปีข้างหน้า แต่จะไม่พอใช้งาน ในอนาคตอันใกล้นี้ เพราะต่อไปข้างหน้า อุปกรณ์หลาย ๆ ชนิด จะต้องใช้ IP กันแล้ว เช่น โทรศัพท์มือถือ, รถยนต์ รวมทั้งอุปกรณ์ electronics ในรถ, เตาอบ, ตู้เย็น ฯลฯดังนั้น ผู้ออกแบบจึงเลือก 128 บิท บิทมากกว่าเดิม 4 เท่า และมี IP มากกว่า IPv4 เดิม 2^96 IPsแต่ IPs ที่ใช้งานได้จริง จะน้อยกว่าจำนวนที่เห็น (2^128) เพราะการกำหนด address จะใช้แค่ 64 บิท ส่วนอีก 64 บิทที่เหลือ จะกำหนดเป็น routing ดังนั้น 128 บิทนี่ก็มีโอกาสจะไม่พอใช้ในวันข้างหน้า แต่หวังว่าจะไม่ใช่เร็ว ๆ นี้Address Typeเช่นเดียวกับ IPv4, IPv6 address ก็แบ่งออกเป็นส่วน network และ host โดยใช้ subnet masks.IPv6 จะแบ่ง 64 bits แรกเป็น network part และ 64 bits หลังเป็น host part Addresses without a special prefixIPv6 address ที่ไม่มีส่วนกำหนด network มีสองชนิดคือLocalhost addressเป็น address ที่ใช้สำหรับ loopback interface, ถ้าเป็น IPv4 ก็คือ "127.0.0.1" แต่ถ้าเป็น IPv6 localhost address จะเขียนแบบนี้ 0000:0000:0000:0000:0000:0000:0000:0001 หรือเขียนแบบย่อจะได้ ::1Packets ที่มี source หรือ destination เป็น address นี้ จะไม่มีทางออกจากเครื่องที่ส่งไปยังเครื่องอื่น ๆ ได้Unspecified address คือ address ที่หมายถึง "any" หรือ "0.0.0.0" ใน IPv4 สำหรับ IPv6 เขียนเป็น0000:0000:0000:0000:0000:0000:0000:0000 หรือเขียนแบบย่อ :: address นี้ ส่วนมากเราจะเห็นหรือใช้ใน socket binding (to any IPv6 address) หรือใน routing tables. Note: unspecified address ไม่สามารถใช้เป็น destination address ได้Network part หรือเรียกอีกอย่างหนึ่งว่า prefixเรามาดู prefix ชนิดต่าง ๆ กันดีกว่า ว่ามีอะไรกันบ้าง ในปัจจุบัน (อาจจะมีเพิ่มขึ้นอีกในอนาคต
การใช้งาน IPv6 (Internet Protocol version 6)
การนำ IPv6 มาใช้ ควรจะเป็นไปอย่างค่อยเป็นค่อยไป เนื่องจากการปรับเปลี่ยนอินเทอร์เน็ตโพรโตคอลจะส่งผลกระทบต่อเครือข่ายทั่วโลกที่เชื่อมต่อกันอยู่ ดังนั้นการปรับเปลี่ยนไปสู่เครือข่าย IPv6 ล้วน อาจใช้ระยะเวลาเป็นปี เพราะเหตุนี้ ทาง IETF จึงเสนอทางออกเพื่อช่วยในการทำงานร่วมกันระหว่าง IPv4 และ IPv6 ในระหว่างที่เครือข่ายบางแห่งเริ่มมีการปรับเปลี่ยนในช่วงแรก การใช้งาน IPv6 อาจอยู่ในวงแคบ ดังนั้นเราต้องการเทคนิคเพื่อเชื่อมต่อเครือข่ายที่เป็น IPv6 เข้ากับเครือข่าย IPv4หรือเครือข่าย IPv6 อื่น เทคนิคการทำงานร่วมกันระหว่าง IPv4 และ IPv6 แบ่งออกเป็น 3 ประเภทด้วยกันคือ1. การทำ dual stack—เป็นวิธีพื้นฐานที่สุด ทำงานโดยใช้ IP stack สองอันคือ IPv4 stack และ IPv6 stack ทำงานควบคู่กัน เมื่อใดที่แอพพลิเคชั่นที่ใช้เป็น IPv4 ข้อมูลแพ็กเก็ตก็จะถูกส่งออกผ่านทาง IPv4 stack เมื่อใดที่แอพพลิเคชั่นที่ใช้เป็น IPv6 ข้อมูลแพ็กเก็ตก็จะถูกส่งออกผ่านทาง IPv6 stack การทำ dual stack เป็นทางออกที่ง่ายที่สุดแต่ไม่ใช่ long term solution เนื่องจากยังจำเป็นต้องใช้ IPv4 address ที่โฮสต์หรือเร้าท์เตอร์ที่ใช้ dual stack นั้น2. การทำ tunneling—เป็นอีกวิธีที่ใช้กันแพร่หลายเพราะเหมาะสมกับการสื่อสารระหว่างเครือข่าย IPv6 ผ่านเครือข่าย IPv4 การส่งข้อมูลทำได้โดยการ encapsulate IPv6 packet ภายใน IPv4 packet ที่ tunneling gateway ก่อนออกไปยังเครือข่าย IPv4 ที่ปลายทาง ก่อนเข้าไปสู่เครือข่าย IPv6 ก็จะต้องผ่าน tunneling gateway อีกตัวซึ่งทำหน้าที่ decapsulate IPv6 packet และส่งต่อไปยังจุดหมายปลายทาง จะเห็นได้ว่าการทำ tunneling นี้จะใช้ไม่ได้สำหรับการสื่อสารโดยตรงระหว่างเครื่องในเครือข่าย IPv6 และเครื่องในเครือข่าย IPv43. การทำ translation—การทำ translation จะช่วยในการสื่อสารระหว่างเครือข่าย IPv6 และ IPv4 เทคนิคการทำ translationมีสองแบบ แบบแรกคือการแปลที่ end host โดยเพิ่ม translator function เข้าไปใน protocol stack โดยอาจอยู่ที่ network layer,TCP layer, หรือ socket layer ก็ได้ แบบที่สองคือการแปลที่ network device โดยจะต้องใช้ gateway ทำหน้าที่เป็น IPv6-IPv4และ IPv4-IPv6 translator อยู่ที่ทางออกที่มีการเชื่อมต่อระหว่างเครือข่าย IPv6 และ IPv4ทั้งนี้หลังจากการปรับเปลี่ยนเสร็จสมบูรณ์ เมื่อเครือข่ายต้นทาง กลางทาง และปลายทาง เป็น IPv6 ทั้งหมด เราสามารถทำการสื่อสาร โดยใช้โพรโตคอล IPv6 โดยตรง ซึ่งเราเรียกการสื่อสารลักษณะนี้ว่า native IPv6 networkการประยุกต์ใช้งาน IPv6 จะสามารถใช้งานในรูปแบบที่แตกต่างกันไปขึ้นอยู่กับความต้องการของผู้ใช้ ผู้พัฒนาก็สามารถตอบสนอง ให้เป็นไปในสิ่งที่ผู้ใช้ต้องการ ถ้าIPv4 สามารถทำได้ IPv6 ก็สามารถทำได้ และประสิทธิภาพในการสื่อสารต้องดีกว่า IPv4 ซึ่งหนึ่งในนั้นก็คือการนำเอา IPv6 มาทำการเคลื่อนที่เหมือน IPv4 แต่จะลด Overhead และเพิ่มประสิทธิภาพของความปลอดภัยทำให้การทำงานดีขึ้นเมื่อย้ายไปเครือข่ายอื่นๆจนสามารถกลับมาเครือข่ายเดิมของตัวเอง ตลอดการเชื่อมต่อโดยผู้ใช้ไม่ต้องมาติดตั้งหรือเปลี่ยนแปลงค่าใหม่ตามเครือข่ายนั้นๆMobile IPv6Mobile IPv6 คือ การใช้งานอินเตอร์เน็ตแบบเคลื่อนที่บนเครือข่าย IPv6 โดยปกติคอมพิวเตอร์พกพาหรือโน็ตบุคสามารถใช้งานตามที่ต่างๆ คล้ายกับการใช้งานโทรศัพท์เคลื่อนที่เพียงแต่คอมพิวเตอร์จะใช้ IP address แทนหมายเลขโทรศัพท์ ทีนี้ทำอย่างไรให้ IP address ของเราติดไปกับเครื่องคอมพิวเตอร์ เหมือนหมายเลขโทรศัพท์เวลาเราย้ายเครือข่าย มาตราฐาน Mobile IPv6 จึงถูกกำหนดขึ้นมาโดยให้เครื่องคอมพิวเตอร์มี IP address สองชุด ชุดแรกเป็นเสมือน บ้านเลขที่เดิมเรียกว่า Home Address ชุดที่สองเป็นเสมือนเลขที่ชั่วคราวซึ่งได้มาเวลาย้ายเครือข่ายเรียกว่า Care-of address จากนี้ทุกการติดต่อกับ Home Address ก็จะถูกส่งต่อโดยตัวกลางหรือ Home Agent มายัง Care-of address โดยไม่สะดุดคือทั้งผู้รับและผู้ส่งไม่ต้องเปลี่ยนแปลง IP address ใดๆด้วยตนเอง
การใช้งาน Mobile IPv6
เมื่อเราต้องการใช้งานอินเตอร์เน็ตขณะเคลื่อนที่ การใช้ Mobile IPv6 ทำให้การส่งข้อมูลผ่านอินเตอร์เน็ตราบรื่น ทุกเครือข่ายต้องเชื่อมผ่านรูปแบบ IPv6 เราจะสามารถเคลื่อนย้ายในรูปแบบนี้ได้จากทุกที่ที่สามารถเชื่อมถึงกัน ในการทดสอบได้ทำอยู่ในระดับห้องทดลองก็จะมี การทดสอบในระดับโปรแกรมที่ใช้งาน 3 โปรแกรมคือการ ping ssh ftp และการ Streaming ได้แสดงผลของการทดลองให้ดูความแตกต่างและความสะดวกในการใช้งานเมื่อเราเคลื่อนย้ายไปสู่เครือข่ายอื่น องค์ประกอบที่สำคัญของ IPv61. Mobile Node (MN) อุปกรณ์เคลื่อนที่2. Corespoding Node's (CN) คู่สนทนา3. Home Agent (HA) ตัวกลางในการติดต่อกับ MN4. Home Network เครือข่ายเดิม5. Home Address หมายเลขไอพีเดิม6. Foreign Network เครือข่ายใหม่7. Care-of Address หมายเลขไอพีใหม่
ประโยชน์หลักของ IPv6
ประโยชน์หลักของ IPv6 และเป็นเหตุผลสำคัญของการเริ่มใช้ IPv6 ได้แก่ จำนวน IP address ที่เพิ่มขึ้นอย่างมากมายมหาศาลเมื่อเปรียบเทียบกับจำนวน IP address เดิมภายใต้ IPv4 IPv4 address มี 32 บิต ในขณะที่ IPv6 address มี 128 บิต ความแตกต่างของจำนวน IP address มีมากถึง 296 เท่า ความสำคัญของการมี IP address ที่ไม่ซ้ำกันและสามารถเห็นกันได้ทั่วโลก จะช่วยผลักดันการพัฒนา แอพพลิเคชั่นแบบ peer-to-peer ที่ต้องการ IP address จริงเป็นจำนวนมาก เช่นการทำ file sharing, instant messaging, และ online gaming แอพพลิเคชั่นเหล่านี้มีข้อจำกัดภายใต้ IPv4 address เนื่องจากผู้ใช้บางส่วนที่ได้รับจัดสรร IP address ผ่าน NAT (Network AddressTranslation) ไม่มี IP address จริง จึงไม่สามารถใช้แอพพลิเคชั่นเหล่านี้ได้ การใช้ IP address ปลอม อาจทำให้เกิดความยุ่งยากในอนาคตหากต้องมีการรวมเครือข่ายสองเครือข่ายที่ใช้ IP address ปลอมทั้งคู่ อีกทั้ง การใช้ IP address ปลอม เป็นการปิดโอกาสที่จะใช้แอพพลิเคชั่นหรือบริการแบบ peer-to-peer เช่น IPsec ในอนาคต
ขั้นตอนการทำงานของ Mobile IP
1. เมื่อ MN เคลื่อนที่ไปยัง Foreign network จะได้รับ IP address ใหม่จากเจ้าของเครือข่าย เรียกว่า Care-of address2. MN ส่ง ฺBinding Update ไปยัง HA เพื่อประกาศ Care-of address ให้ Home network ทราบ3. HA ตอบรับโดยส่ง Binding Acknowledgement กลับ4. เมื่อ CN ต้องการติดต่อกับ MN จะติดต่อผ่าน HA (เพราะยังไม่ทราบว่ามีการเคลื่อนที่)5. HA ส่งต่อข้อมูลจาก CN ให้กับ MN โดยใช้ Care-of address ของ MN6. MN สร้าง tunnel ผ่าน HA เพื่อส่งข้อมูลต่อไปยัง CN7. Return Routability: MN และ CN แลกเปลี่ยน test packet เพื่อทดสอบเส้นทางว่าทั้ง Home address และ Care-of-address นั้นใช้งานได้ โดย MN จะส่ง test packet ไปทั้งสองเส้นทาง เส้นทางแรกส่งผ่าน HA ไปยัง CN และเส้นทางที่สองส่งไปยัง CN โดยตรง จากนั้น CN ตอบรับ test packet ทั้งสองพร้อมทั้งส่งรหัสเพื่อเริ่มการติดต่อ8. Route Optimization: MN ส่ง Binding Update ไปยัง CN เพื่อประกาศ IP address ใหม่ จากนั้น CN จะตอบรับโดยส่ง Binding Acknowledgement กลับ จากนั้น MN และ CN จะติดต่อกันโดยตรงไม่ผ่าน HA โดยข้อมูลที่ส่งผ่านกันทั้งหมดนี้จะถูกเข้ารหัสลับเพื่อความปลอดภัยหมายเลขไอพี หรือ ไอพีแอดเดรส (Internet Protocol Address) คือหมายเลขที่ใช้ในระบบเครือข่ายที่ใช้โพรโทคอล Internet Protocol คล้ายกับหมายเลขโทรศัพท์ ที่เครื่องคอมพิวเตอร์ เครื่องเราท์เตอร์ เครื่องแฟกซ์ จะมีหมายเลขเฉพาะตัวโดยใช้เลขฐานสอง จำนวน 32 บิต โดยการเขียนจะเขียนเป็นชุด 4 ชุด โดยแต่ละชุดจะใช้เลขฐานสองจำนวน 8 บิต ซึ่งโดยทั่วไปแล้ว ผู้คนส่วนใหญ่จะคุ้นเคยกับระบบเลขฐานสิบ จึงมักแสดงผลโดยการใช้เลขฐานสิบ จำนวน 4 ชุด ซึ่งแสดงถึงหมายเลขเฉพาะของเครื่องนั้น สำหรับการส่งข้อมูลภายในเครือข่ายแลน แวนหรือ อินเทอร์เน็ต โดยหมายเลขไอพีมีไว้เพื่อให้ผู้ส่งรู้ว่าเครื่องของผู้รับคือใคร และผู้รับสามารถรู้ได้ว่าผู้ส่งคือใครตัวอย่างของหมายเลขไอพี ได้แก่ 207.142.131.236 ซึ่งเมื่อแปลงกลับมาในรูปแบบที่อ่านได้จะเรียกว่า โดเมนแอดเดรส ผ่านทาง โดเมนเนมซีสเทม (Domain Name System) ซึ่งหมายเลขนั้นหมายถึง www.wikipedia.orgไอพีเวอร์ชัน 6ไอพีเวอร์ชันที่ 6 (IPv6) ถูกพัฒนาขึ้นมาด้วยจุดประสงค์หลักในการแก้ปัญหาการขาดแคลนจำนวนหมายเลขไอพีซึ่งกำหนดโดยมาตรฐานไอพีเวอร์ชันที่ 4 ซึ่งในมาตรฐานของเวอร์ชัน 6 นี้จะใช้ระบบ 128 บิตในการระบุหมายเลขไอพี

ข้อดี - ข้อเสีย ของ IPv6
ข้อดี1 มีหมายเลข IP Address มากกว่าเดิมมาก ทำให้เพียงพอต่อความต้องการของผู้ใช้เครือข่ายมีความน่าเชื่อถือมากขึ้นกว่าเดิม เพราะเป็นการใช้งาน IP จริงทั้งหมด ต่างจากแต่ก่อนที่ไม่สามารถใช้งานได้ทุกเบอร์2 มีระบบรักษาความปลอดภัยที่ดี3 เครือข่ายมีการทำงานแบบ Real Time Processing จึงทำงานได้เร็วขึ้นและมีประสิทธิภาพมากขึ้น4 ลดภาระในการทำงานของผู้ดูแลระบบด้านการบริหารจัดการ เนื่องจากมีการปรับแต่งระบบอัตโนมัติ5 มีการใช้งานอินเทอร์เน็ตแบบเคลื่อนที่ (Mobile IP)ข้อเสีย1 การใช้ IPv6 แทน IPv4 เป็นเรื่องที่ซับซ้อนและทำได้ยาก ต้องมีการเปลี่ยนแปลงอย่างค่อยเป็นค่อยไปและถูกวิธี2 ประเทศไทยยังมีการติดตั้งเครือข่าย IPv6 ไม่มากนัก จะเกิดขึ้นกับคนบางกลุ่มหรือกับผู้ให้บริการรายใหญ่ๆเท่านั้น3 ในประเทศไทยประชาชนส่วนใหญ่ยังขาดความรู้ความเข้าใจในเรื่องนี้ จึงไม่ตื่นตัวหรือสนใจที่จะใช้ IPv6 ซึ่งเป็นสิ่งจำเป็นในอนาคต
บทสรุป
ความจำเป็นในการใช้ IPv6 นั้นขึ้นอยู่กับความต้องการใช้ IP Address ของผู้ให้และผู้ใช้บริการ ประเทศในทวีปอเมริกาเหนือได้รับหมายเลข IPv4 address เป็นจำนวนมากถึงร้อยละ 70 ของ IP Address ทั้งหมดในโลก จึงเกินความจำเป็นที่ต้องใช้ IPv6 ในขณะนี้ แต่ในขณะเดียวกัน บางประเทศในแถบเอเชียและยุโรป จำนวนผู้ใช้อินเทอร์เน็ตสูงกว่าหมายเลข IPv4 address ที่ได้รับ จึงขาดแคลน IP Address รวมไปถึงสาเหตุที่มีความต้องการพัฒนาเทคโนโลยีมากขึ้น ทำให้ต้องการใช้ IP Address มากขึ้น ปัจจุบัน ในประเทศไทยได้เริ่มมีการก่อตั้งคณะทำงานทางด้านนี้โดยเฉพาะ รวมทั้งได้รับความร่วมมือจากผู้ให้บริการอินเทอร์เน็ต เพราะหากรอจนกระทั่งความจำเป็นดังกล่าวมาถึง โดยไม่ได้มีการวางแผนการปรับเปลี่ยนเครือข่ายล่วงหน้า อาจทำให้สิ้นเปลืองค่าใช้จ่ายและเสียโอกาสหลายด้าน นอกจากนี้ เราทุกคนที่ใช้อินเทอร์เน็ตควรตื่นตัวในการรับฟังข่าวสารหรือความเคลื่อนไหวทางด้านนี้อยู่ตลอดเวลา เพื่อที่จะสามารถเตรียมพร้อมรับกับ IPv6 ในอนาคตอันใกล้
ข้อสอบ IPv4
1.IPv4 เป็นระบบที่ใช้กี่บิต
ก. 8 bit
ข. 16 bit
ค. 32 bit
ง. 64 bit
2.subnet mask ของ class A คือ
ก. 255.0.0.0
ข. 255.255.0.0
ค. 255.255.255.0
ง. ถูกทุกข้อ
3. subnet mask ของ class B คือ
ก. 255.0.0.0
ข. 255.255.0.0
ค. 255.255.255.0
ง. ถูกทุกข้อ
4. subnet mask ของ class C คือ
ก. 255.0.0.0
ข. 255.255.0.0
ค. 255.255.255.0
ง. ถูกทุกข้อ
5.mask 3 bit class C ได้กี่ subnet
ก. 5 subnet
ข. 6 subnet
ค. 7 subnet
ง. 8 subnet
6.mask 3 bit class C ได้กี่ host/sub
ก. 20 host/sub
ข. 25 host/sub
ค. 30 host/sub
ง. 35 host/sub
7.mask 4 bit class C ได้กี่ subnet
ก. 11 subnet
ข. 12 subnet
ค. 13 subnet
ง. 14 subnet
8.mask 4 bit class C ได้กี่ host/sub
ก. 14 host/sub
ข. 15 host/sub
ค. 16 host/sub
ง. 17 host/sub
9.mask 5 bit class C ได้กี่ subnet
ก. 28 subnet
ข. 29 subnet
ค. 30 subnet
ง. 31 subnet
10.mask 5 bit class C ได้กี่ host/sub
ก. 9 host/sub
ข. 8 host/sub
ค. 7 host/sub
ง. 6 host/sub
เฉลย
1. ค. 32 bit
2. ก. 255.0.0.0
3. ข. 255.255.0.0
4. ค. 255.255.255.0
5. ข. 6 subnet
6. ค. 30 host/sub
7. ง. 14 subnet
8. ก. 14 host/sub
9. ค. 30 subnet
10. ง. 6 host/sub

IPV4

IPV4
ที่มา : http://courseware.bodin.ac.th/~nantawat/network/subnetmask.htm
เรื่องราวของ IP Address ถูกกล่าวขานกันมาพร้อมกับการขยายตัวของระบบเครือข่ายอินเตอร์เน็ต ที่ใช้ภาษาในการสื่อสารกันที่เรารู้จักกันดีในชื่อ TCP/IP (Transmission Control Protocol/ Internet Protocol) และจากการขยายตัวอย่างต่อเนื่อง ทำจำนวน IP Address ไม่พอต่อความต้องการ จึงมีการพัฒนา IPv6 มาเสริมทัพกับ IPv4 เพื่อให้เพียงพอต่อความต้องการ แต่ถึงอย่างไร IPv4 ยังคงเป็นพื้นฐานสำหรับโลกอินเตอร์เน็ตอยู่ต่อไปอีกนานทีเดียว เรื่องการกำหนดหมายเลข IP (IP Addressing) เป็นพื้นฐานที่ดี ทั้งยังเป็นความรู้เพิ่มเติมสำหรับผู้ที่สนใจ ได้พอสมควร IP Address เปรียบเสมือนกับเลขที่บ้านของเครื่องคอมพิวเตอร์ที่เชื่อมต่อกันเป็นเครือข่ายอินเตอร์เน็ต หรืออินทราเน็ต การส่งข้อมูลบนอินเตอร์เน็ต ก็เหมือนกับการส่งจดหมาย ซึ่งต้องระบุบ้านเลขที่บนซองจดหมายเพื่อให้จดหมายถึงปลายทางได้อย่าถูกต้อง เครื่องคอมพิวเตอร์ หรืออุปกรณ์เน็ตเวิร์ค ก็เช่นเดียวกัน จะต้องมีหมายเลขประจำเครื่อง ซึ่งก็คือ IP Address นั่นเอง ข้อมูลที่ถูกส่งไปยังแต่ละเครื่อง (ต่อไปขอเรียกว่าโฮส) จะมีหมายเลข IP Address เพื่อบอกปลายทางที่จะติดต่อด้วยเสมอ IP Address ที่ใช้กันอยู่ในปัจจุบัน เป็น IP version 4 หรือที่เรียกกันว่า IPv4 มีขนาด 4 byte แต่ละ byte มีขนาด 8 bit ดังนั้น IPv4 จึงมีขนาดเท่ากับ 32 bit เนื่องจากเป็นเลขฐานสอง เราคำนวณจำนวนโฮสได้จาก 2n ดังนั้นสามารถกำหนดหมายเลข IP Addressให้โฮสได้ทั้งหมด 232 = 4,294,967,296 โฮส แต่ก็ยังไม่พอใช้ นักพัฒนาจึงพัฒนา IP เป็น version 6 หรือ IPv6 ที่มีขนาด 128 bit และเริ่มนำมาเสริมกับ IPv4 ได้เป็น 2128 เมื่อ IP Address มีจำนวนมากขนาดนั้น เหตุผลหนึ่งคือเพื่อให้ง่ายต่อการจัดสรร จึงแบ่ง IPv4 ออกเป็น Class ซึ่งมีอยู่ด้วยกันทั้งหมด 5 Class ทำให้ง่ายต่อการจัดสรรขึ้นมาอีกClass IP เริ่มต้น IP สิ้นสุด NetID (bit) HostID (bit)Class A 0.0.0.0 127.255.255.255 8 24 = 16777216Class B 128.0.0.0 191.255.255.255 16 16 = 65536Class C 192.0.0.0 223.255.255.255 24 8 = 256Class D 224.0.0.0 239.255.255.255 - multicast addressClass E 240.0.0.0 247.255.255.255 - Reserveตารางที่ 1 IP Address และจำนวนโฮสในแต่ละ Class" Class A มี NetID = 8 bit จาก IP Address ทั้งหมด 32 bit จึงเหลือ HostID 24 bit ทำให้มีจำนวนaddress ในเน็ตเวิร์คเดียวกันได้ทั้งหมด เท่ากับ 224 = 16777216 address " Class B มี HostID เท่ากับ NetID ดังนั้นมีจำนวน address เท่ากับ 216 = 65536" Class C เป็น Class ที่เล็กที่สุดทีใช้งานกัน มี HostID 8 bit ทำให้มี address ได้เท่ากับ 28 = 256 " Class D นั้นเป็น Multicast Address โดยสงวนไว้ใช้สำหรับอุปกรณ์ที่จะต้องมีการส่งข้อมูลในกลุ่มเดียวกัน" Class E ท้ายสุดของ IPv4 สงวนไว้ใช้ในอนาคต เพื่อการพัฒนาขีดความสามารถของ IPv4 เองรูปแบบการเขียน จะมีหมายเลขเรียนกัน 4 ชุด โดยมีจุดคั่นกลาง มีด้วยกัน 2 ชุดคือ IP Address และ Subnet Maskโดยตัวเลข ชุดแรกเรียกว่า IP Address หรือ Host Address ชุดหลังเรียกว่า Subnet Mask เช่น 192.168.1.1/255.255.255.0 เป็นต้นตารางที่ 2 แสดงหมายเลข IP Address ระหว่างเลขฐานสิบ และ ฐานสอง จากตัวอย่างเมื่อเปลี่ยน 192 เป็นเลข ฐานสองจะมีค่าเท่ากับ 1100 0000 ต้องจะใช้ความสามารถในการเปลี่ยนเลขฐานสิบเป็นฐานสอง ลองเปลี่ยนเลขถัดไปคือ 168.1.1 เป็น ฐานสอง จะได้เท่ากันกับในตาราง มีข้อแม้นิดนึงครับ คือต้องเปลี่ยนที่ละชุดตัวเลขระหว่างจุดIP Addressฐานสิบ ฐานสอง (32 bit)192.168.1.1 1100 0000 . 1010 1000 . 0000 0001 . 0000 0001Subnet Mask255.255.255.0 1111 1111 . 1111 1111 . 1111 1111 . 0000 0000ตารางที่ 2 ตัวอย่างหมายเลข IP Address และ Subnet Maskมาถึงเรื่องต่อไป คือคำว่า Private IP กับ Public IP กันบ้าง คำว่า Private IP หรือบางทีเรียกกันว่า Internal IP ผมให้นิยามไว้ให้หมายถึง IP Address ที่ไม่ใช้บน Internet และไม่สามารถติดต่อกับ Public IP ได้ แต่ไม่ใช่ซะทีเดียว เราสามารถใช้เทคนิค ที่เรียกว่า NAT (Network Address Translation) เข้าช่วยได้ Private IP นี้สามารถกำหนดขึ้นมาใช้ได้เอง โดยทั่วไปแล้วจะใช้กับ Intranet ในหน่วยงาน ในส่วนของ Public IP หรืออีกนัยหนึ่งเรียกว่า Real IP นั้นใช้ในเครือข่าย Internet โดยจะต้องขอไปยังหน่วยงานที่กำกับดูแล IP Address ในแต่ละประเทศ ซึ่งแน่นอนว่าแต่ละหน่วยงานที่ขอ IP Address ต้องได้หมายเลขที่ไม่ซ้ำกับใครเลยในโลกนี้ด้วยครับ ในประเทศไทยหน่วยงานที่กำกับดูแลคือ thnic.netClass IP เริ่มต้น IP สิ้นสุด NetID (bit) HostID (bit)Class A 10.0.0.0 10.255.255.255 24 24 = 16777216Class B 172.16.0.0 172.32.255.255 16 16 = 65536Class C 192.168.0.0 192.168.255.255 8 8 = 256คุ้นๆ กันบ้างกับตัวเลข 192.168.x.x ที่เห็นกันทั่วไปตามร้าน Internet Caf? หรือ Games Caf?' นะครับ นี่แหละ Private IP ทีนี้ลองมาดูส่วนประกอบของ IP Address ที่เขียนๆ กันบ้างว่าประกอบด้วยอะไรบ้าง แล้วมีความหมายอย่างไร ลองดูตัวอย่าง IP Address ประกอบกับคำอธิบายด้านล่างครับตัวอย่าง IP Address = 192.168.1.1/255.255.255.01. IP Address หรือ Host Address คือ 192.168.1.12. Subnet Mask คือหมายเลขหลังเครื่องหมาย "/" คือ 255.255.255.0 โดยมีความหมายว่า มีจำนวนโฮสในเน็ตเวิร์คเท่าไหร่ ใน Class C คำนวณจำนวนได้โดยการนำค่าจำนวน HostID ที่มีขนาดเท่ากับ 8 bit หรือเท่ากับ 28 = 256 ลบด้วยค่าสุดท้ายของ Subnet Mask จากตัวอย่างคือ 256 - 0 = 256 ดังนั้นจึงมีจำนวนโฮสทั้งหมดเท่ากับ 256 โฮส แต่ในหนึ่งเน็ตเวิร์คจะต้องมี Network Address และ Broadcast Address เสมอ จึงมีโฮสเท่ากับ 254 โฮส3. Network Address บอกตำแหน่งเริ่มต้นของ IP Address ใน Class จากตัวอย่าง เป็นเน็ตเวิร์ค Class C ซึ่งมีโฮสทั้งหมดเท่ากับ 256 โฮส โดยมี IP Address เริ่มจาก 192.168.1.0 - 192.168.1.255 ดังนั้น Network Address คือ 192.168.1.0 4. Broadcast Address เป็นช่องทางของการส่งข้อมูลให้กับโฮสอื่นๆ เปรียบเสมือนการตะโกนเข้าไปในห้องที่มีคนอยู่รวมๆ กัน ซึ่งทำให้คนที่อยู่ในห้องได้ยินพร้อมๆ กันทั้งหมด โดย Broadcast Address จะเป็น IP Address สุดท้ายของเน็ตเวิร์คเสมอ จากข้อ 3 Broadcast Address จึงมีค่าเท่ากับ 192.168.1.255 มีการเขียน Subnet Mask อีกอย่างที่เห็นกันบ้างคือเขียนเป็นจำนวน bit เช่น 192.168.1.1/24 โดย 24 นี้ คือ NetID จาก 32 bit ของ IPv4 ทำให้เหลือ HostID เท่ากับ 8 bit (32 - 24) ดังนั้นจึงเขียน Subnet Mask เป็น /24 ซึ่งเท่ากับการเขียนโดยระบุ Subnet Mask 255.255.255.0 ทีนี้มารู้จักคำว่า Classless กัน มันหมายถึงการแบ่ง IP Class ต่างๆ ออกเป็นเน็ตเวิร์คย่อยๆ หรือเรียกได้อีกอย่างว่า แบ่งไม่เต็มคลาส ยกตัวอย่าง Network คลาส C ซึ่งถูกแบ่งเป็นเน็ตเวิร์คละ 128 โฮส เขียนได้เป็น 192.168.1.3/255.255.255.128 นี่แหละ Classless มาดูว่าจะศึกษาจาก IP Address ข้างต้นอย่างไร โดยเราใช้ความรู้เรื่องพื้นฐานก่อนหน้านี้มาใช้กันเลย1. IP Address หรือ Host Address คือ 192.168.1.32. หาว่ามีจำนวนโฮสทั้งหมดกี่โฮส โดยการนำจำนวน 256 ซึ่งเป็นจำนวนโฮสสูงสุดของ Class C ลบด้วย ตัวสุดท้ายของ Subnet Mask คือ 256 - 128 = 128 โฮส 3. หาว่า Network Address มีค่าเท่าไหร่ โดยเอาที่เก็บไว้ในใจในข้อ 2 ออกมาซึ่งเท่ากับ 128 โฮส แล้วมาดู IP Address อย่างใกล้ชิด คอลเกต สังเกตเห็นว่า IP Address ตัวอย่าง มีค่าอยู่ในช่วงของเน็ตเวิร์คแอดเดรส 0-127 ดังนั้น Network Address ของ 192.168.1.3/255.255.255.128 คือ 192.168.1.04. Broadcast Address เท่ากับ Network Address + 128 ซึ่งเป็นจำนวนโฮสสูงสุดที่มีอยู่ใน Classless นี้ สำหรับ Broadcast นี้คือ 192.168.1.127 ถึงตอนนี้มีหลายคนสงสัย ผมบอกว่าให้เอา Network Address + จำนวนโฮส ก็เป็น 0+128 ทำไมได้ 127 (0 -127 มีทั้งหมด 128 ค่า ดังนั้น Address สุดท้ายจึงเป็น 192.168.1.127 )มาถึงการเขียน Subnet Mask เป็น bit กันครับเริ่มโดยหาว่า 2 ยกกำลังเท่าไหร่ ถึงจะได้เท่ากับจำนวนโฮส (128) ? ซึ่งมีค่าเท่ากับ 27 = 128 หลังจากนั้นนำค่า 32 (bit) ลบด้วยค่าที่หาได้ คือ 7 (bit) เหลือ 25 (bit) ดังนั้น จึงเขียน Subnet Mask อีกรูปแบบได้เป็น 192.168.1.1/25 เป็นอันเสร็จ การเขียนแบบนี้จะเจอในผู้ที่เก๋าประสบการณ์ มีกฎอีกนิดสำหรับกฎการแบ่ง Classless คือ ต้องแบ่งเป็นจำนวนเท่ากับ 2n เท่านั้น

วันพุธที่ 4 พฤศจิกายน พ.ศ. 2552

ข้อสอบเรื่อง IPv6 30 ข้อ
1. IP Address มีชื่อเต็มว่า
ก. Internet Protocall Address
ข. Internet Protocol Address

ค. Internat Protocall Address
ง. Internets Protocol Address

2. ข้อใดเป็นลักษณะเฉพาะของ IP Address ของคอมพิวเตอร์แต่ละเครื่อง
ก. ตัวเลขสามารถซ้ำกันได้ทุกตัว
ข. สามารถใช้เครื่องหมาย “;” คั่นระหว่างเลขแต่ละหลักได้
ค. ตัวเลขทุกตัวจะต้องไม่ซ้ำกัน
ง. แต่ละประเทศมีข้อกำหนดที่ต่างกัน
3. Internet Protocol version ใดที่ใช้กันมากที่สุดในปัจจุบัน
ก. IPv1
ข. IPv2
ค. IPv3
ง. IPv4
4. เหตุใดจึงมีการคิดค้น Internet Protocol version ใหม่ขึ้น
ก. เพราะ IP Address ที่มีอยู่ไม่เพียงพอกับความต้องการของผู้ใช้
ข. เพราะต้องมีการคิดค้นเวอร์ชันใหม่ทุกๆ 3 ปี
ค. เป็นการลงมติเห็นชอบจากเวทีโลก
ง. ไม่มีข้อใดถูก

5. IPv4 และ IPv6 แตกต่างกันอย่างไร
ก. IPv4 มี 128 บิต IPv6 มี 64 บิต
ข. IPv4 มี 128 บิต IPv6 มี 32 บิต
ค. IPv4 มี 32 บิต IPv6 มี 128 บิต
ง. IPv4 มี 32 บิต IPv6 มี 64 บิต

6. ข้อใดผิด
ก. IPv6 ผู้บริหารมีส่วนในการบริหารจัดการงานมากขึ้น
ข. IPv6 ระบบมีความน่าเชื่อถือมากขึ้น
ค. IPv6 เครือข่ายมีการทำงานแบบ Real Time Processi
ง. IPv6 มีการใช้งานอินเทอร์เน็ตแบบเคลื่อนที่ (Mobile IP)
7. เหตุใดประเทศในแถบอเมริกาเหนือจึงไม่มีความจำเป็นต้องใช้ IPv6
ก. เพราะสังคมเป็นแบบประชาธิปไตย
ข. เพราะมี IP Address ที่กำหนดขึ้นใช้เองเฉพาะชาวอเมริกัน
ค. เพราะมีรากฐานเศรฐกิจที่มั่มคง
ง. เพราะได้รับการจัดสรร IP Address ไปถึง 70% ของ IP Address ที่ใช้ทั่วโลก
8. แนวโน้มการพัฒนาด้านเทคโนโลยีมีส่วนเกี่ยวข้องกับการใช้ IP Address อย่างไร
ก. ทำให้ IP Address มีปริมาณเกินความต้องการ
ข. มีการนำเอา IP Address มาใช้กับเทคโนโลยี ทำให้ต้องการใช้ IP Address มากขึ้น
ค. เทคโนโลยีด้านอื่นจะเข้ามาแทนการใช้ IP Address
ง. การใช้ IP Address ควบคู่กับเทคโนโลยีจะถูกจำกัดในวงแคบ
9. ข้อใด ไม่ใช่ ประโยชน์ของการมี IP Address ที่อุปกรณ์อำนวยความสะดวกหรือเครื่องใช้ไฟฟ้า
ก. สามารถส่งข้อมูลได้อย่างรวดเร็วในการสื่อสาร
ข. เชื่อมต่อกับอินเทอร์เน็ตได้เหมือนคอมพิวเตอร์ โดยที่ไม่ต้องผ่านระบบใดๆ
ค. ทำให้ระบบภายในของอุปกรณ์นั้นๆ เกิดผลเสีย
ง. ทำให้การทำงานมีประสิทธิภาพมากกว่าเดิม

10. เหตุใดเราจึงควรศึกษาและทำความเข้าใจในเรื่อง IPv6
ก. เพราะหาก IPv4 ถูกใช้หมดไป IPv6 เป็นสิ่งที่จะแก้ปัญหานี้ได้
ข. เพื่อเตรียมตัวรับมือกับสถานการณ์ในอนาคต
ค. เพื่อความได้เปรียบทางธุรกิจและโอกาสในหลายๆ ด้าน
ง. ถูกต้องทุกข้อ
11.การขอหมายเลข IP Address จะต้องไปจดทะเบียนกับผู้รับจดทะเบียนอินเทอร์เน็ตระดับภูมิภาค หรือเรียกอีกอย่างว่า
ก. PIT
ข. RIR
ค. LPG
ง. PLI
12.ความจำเป็นในการใช้ IPv6 นั้นขึ้นอยู่กับความต้องการใช้อะไร
ก. mont
ข. IP Address
ค. toryt
ง. fopbfor
13. IPv4 นี้มีที่มาจากเลขฐานสองขนาดกี่บิต
ก. 36 บิต
ข. 32 บิต
ค. 45 บิต
ง. 40 บิต
14. IPv6 (Internet Protocol version 6) เป็นเวอร์ชันล่าสุดของอะไร
ก. Internet protobal
ข. Internet protoset
ค. Internet protocal
ง. Internet Protocol

15. IP v6 ได้กำหนดกฎในการระบุตำแหน่งเป็นกี่ประเภท
ก. 1 ประเภท
ข. 2 ประเภท
ค. 3 ประเภท
ง. 4 ประเภท
16. IPv6 มีขนาดของ address กี่ไบท์
ก. 10 ไบท์
ข. 11 ไบท์
ค. 13 ไบท์
ง. 16 ไบท์


17. การเคลื่อน IPv6 packet จาก segment หนึ่งไปอีก segment หนึ่งมีความง่ายขึ้นด้วยโครงสร้างการค้นหาเส้นทางแบบใด
ก. แบบลำดับชั้น
ข. แบบผสม
ค. แบบต่อเนื่อง
ง. แบบล่าง

18. RIR ที่ได้จัดสรรหมายเลข IPv6 มากที่สุด คือ
ก. RIPL MCC
ข. RIPE NCC
ค. RIPT ACC
ง. RIPG TCC
19. Pv6 สนับสนุนการปรับแต่งระบบแบบแบบใด
ก. แบบอัตโนมัติ
ข. แบบถาวร
ค. แบบชั่วคราว
ง. แบบต่อเนื่อง
20. IPv6 ได้รับการออกแบบให้ปฏิรูปกลุ่มของการปรับปรุง IP เวอร์ชัน ใด
ก. 2
ข. 3
ค. 4
ง. 5
ข้อสอบ 20 ข้อ
21.(IPV6) ย่อมาจากอะไร
ก. Internet Protocol Vertion6 ข. Vertion6
ค. Internet Protocol ง.ถูกทุกข้อ
เฉลย ก.
22.โพรโตคอลดังกล่าวทั้งหมดกี่ฉบับ
ก. 1ฉบับ ข. 2ฉบับ
ค. 3ฉบับ ง.4ฉบับ
เฉลย ง.
23.CATNIP ย่อมาจากอะไร
ก.(Common Architecture for Next Generation Internet Protocol)
ข.(TCP and UDP with Bigger Addresses)
ค.(Simple Internet Protocol Plus)
ง.ไม่มีข้อถูก
เฉลยก.
24.TUBA ย่อมาจากอะไร
ก.(Common Architecture for Next Generation Internet Protocol)
ข.(TCP and UDP with Bigger Addresses)
ค.(Simple Internet Protocol Plus)
ง.ไม่มีข้อถูก
เฉลย ข.
25. SIPP ย่อมาจากอะไร
ก.(Common Architecture for Next Generation Internet Protocol)
ข.(TCP and UDP with Bigger Addresses)
ค.(Simple Internet Protocol Plus)
ง.ไม่มีข้อถูก
เฉลย ค.
26.แนวทางในการพัฒนาIPV6 อย่างเป็นทางการไว้ในเอกสาร RFC 1752 โดยมีประเด็นสำคัญดังนี้
ก.นโยบายการแบ่งสรรหมายเลขไอพีแอดเดรส
ข.ไม่มีความจำเป็นที่จะต้องเรียกคืนชุดหมายเลขไอพีรุ่นที่ 4 ที่มีการใช้ประโยชน์ต่ำกว่าเกณฑ์กลับคืนมา
ค.- ให้ใช้หลักการแบ่งสรรหมายเลขไอพีคลาส A ที่เหลืออยู่แบบ CIDR
ง.ถูกทุกข้อ
เฉยล ง.
27.โครงการ IPng Area (คณะทำงานที่ถูกแต่งตั้งโดย Internet Engineering Task Force, IETF ในปีค.ศ.ใด
ก.1991 ข.1992
ค.1993 ง.1994
เฉลย ค.
28.คณะทำงาน IPng ถูกก่อตั้งขึ้นโดยใคร
ก.Steve Deering และ Ross Callon ข.adda
ค.Ping ง.ไม่มีข้อถูก
เฉลย ก.
29.คณะทำงาน Address autoconfiguration ถูกก่อตั้งและนำทีมโดยใครบ้าง
ก. Ross Callon ข. Steve Deering
ค. Dave Katz ร่วมกับ Sue Thomson ง.ถูกทุกข้อ
เฉลย ค.
30.โครงการ IPng Area จะสิ้นสุดลงเมื่อปลายพ.ศ.ใด
ก.ปลายปี 1994 ข.ปลายปี 1997
ค.ปลายปี 1995 ง.ปลายปี 1990
เฉลย ก.